This article was downloaded by: On: *28 January 2011* Access details: *Access Details: Free Access* Publisher *Taylor & Francis* Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Physics and Chemistry of Liquids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713646857

Vapour-Liquid equilibrium and volumetric measurements for binary mixtures of 1,3-Dioxolane with Isomeric chlorobutanes

B. Giner^a; A. Reyes^a; M. Haro^a; S. MartÍn^a; F. M. Royo^a

^a Departamento de Química Orgánica-Química Física, Facultad de Ciencias, Universidad de Zaragoza, Ciudad Universitaria, Zaragoza 50009, Spain

To cite this Article Giner, B., Reyes, A., Haro, M., MartÍn, S. and Royo, F. M.(2004) 'Vapour-Liquid equilibrium and volumetric measurements for binary mixtures of 1,3-Dioxolane with Isomeric chlorobutanes', Physics and Chemistry of Liquids, 42: 2, 173 – 183

To link to this Article: DOI: 10.1080/00319100410001656382 URL: http://dx.doi.org/10.1080/00319100410001656382

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

VAPOUR-LIQUID EQUILIBRIUM AND VOLUMETRIC MEASUREMENTS FOR BINARY MIXTURES OF 1,3-DIOXOLANE WITH ISOMERIC CHLOROBUTANES

B. GINER, A. REYES, M. HARO, S. MARTÍN and F.M. ROYO*

Departamento de Química Orgánica-Química Física, Facultad de Ciencias, Universidad de Zaragoza, Ciudad Universitaria, Zaragoza 50009, Spain

(Received 21 October 2003)

Isobaric vapour–liquid equilibrium measurements for 1,3-dioxolane with isomeric chlorobutane at 40.0 and 101.3 kPa are reported. Activity coefficients were calculated from experimental data. The VLE measurements are thermodynamically consistent. Margules, Van Laar, Wilson, NRTL and UNIQUAC equations have been used to correlate the activity coefficients and we have obtained satisfactory results. We also present density measurements of these systems at 298.15 K.

Keywords: 1,3-Dioxolane; Chlorobutane; Isobaric vapour-liquid equilibrium

INTRODUCTION

In recent studies we have reported thermodynamic and transport properties for several mixtures containing cyclic ethers [1] and haloalkanes [2,3]. We have obtained very useful information from these kinds of systems, following on our study we present here isobaric vapour–liquid equilibrium (VLE) and densities for binary mixtures of 1,3-dioxolane with isomeric chlorobutane. Densities have been determined at 298.15 K and results have been fitted by means of a polynomial type equation. Isobaric VLE has been measured at 40.0 kPa (except for 2-chloro-2-methyl-propane due to its low boiling temperature) and 101.3 kPa. VLE experimental results have been checked for thermodynamic consistency with van Ness method [4].

^{*}Corresponding author. Tel.: +34976761198. Fax: +34976761202. E-mail: femer@posta.unizar.es

Compound	$ ho (\mathrm{g}\mathrm{cm}^{-3})$		T_b (K)	
	Exptl	Lit	Exptl	Lit
1.3-Dioxolane	1.05898	1.05866 ^a	348.55	348.80 ^b
1-Chlorobutane	0.88067	$0.88095^{\rm a}$	351.58	351.58 ^a
2-Chlorobutane	0.86726	$0.86710^{\rm a}$	341.40	341.40 ^a
1-Chloro-2-methylpropane	0.87094	0.87170^{a}	342.10	342.00 ^a
2-Chloro-2-methylpropane	0.83693	0.83610^{a}	323.83	323.90 ^a

TABLE I Densities (ρ) at 298.15 K and normal boiling points (T_b) of pure liquids

^aRef. [10]; ^bRef. [11].

Activity coefficients obtained from experimental data have been correlated with Margules [5], Van Laar [6], Wilson [7], NRTL [8] and UNIQUAC [9] equations.

We have not found any isobaric VLE study on literature involving these mixtures.

EXPERIMENTAL

All liquids used on the determination of the experimental measurements were provided from Aldrich (1-chlorobutane, 2-chloro-2-methylpropane and 1,3-dioxolane with a purity of 99% while 2-chlorobutane with purity better than 99%), excepting 1-chloro-2-methylpropane from Fluka (purity better than 98%). In Table I the comparison between experimental data of densities at 298.15 K and normal boiling point with literature values [10,11] is given.

Densities have been measured with an Anton Paar DMA 58 vibrating tube densimeter automatically thermostated at 298.15 ± 0.01 K. Calibration was carried out with deionised doubly distilled water and dry air. The precision of density measurements is estimated to be $\pm 5 \times 10^{-6}$ g cm⁻³.

Experimental data of VLE was performed using an all-glass, dynamic recirculating still Fischer-Labodest model equipped with a Cottrell pump, a pressure transducer Druk PDCR 110/W and a thermometer from Automatic System Laboratories (model F25). The accuracy of the thermometer is estimated to be ± 0.01 K while the accuracy of pressure transducer is ± 0.1 kPa. Experimental procedure has been previously described [12]. Composition of both phases has been determined by density measurements. The error in the determination of liquid and vapour phases is estimated to be ± 0.0001 .

RESULTS AND DISCUSSION

Experimental data for densities of the mixtures are shown in Table II and they are graphically represented in Fig. 1. Values have been correlated by means of a polynomial equation:

$$\rho = x_1 \rho_1^0 + (1 - x_1) \rho_2^0 + x_1 (1 - x_1) \sum_{i=1}^n A_i (2x_1 - 1)^2$$
(1)

<i>x</i> ₁	$\rho (\text{g cm}^{-3})$	<i>x</i> ₁	$\rho (\mathrm{gcm^{-3}})$	x_1	$\rho (\mathrm{gcm^{-3}})$
1,3-Dioxol	lane (1) + 1-chloro	butane (2)			
0.0464	0.88607	0.4574	0.94293	0.8265	1.01505
0.0703	0.88890	0.5410	0.95718	0.9131	1.03598
0.2214	0.90792	0.6565	0.97877	0.9577	1.04744
0.3225	0.92204	0.7291	0.99357		
1,3-Dioxol	lane $(1) + 2$ -chloro	butane (2)			
0.1094	0.88169	0.5546	0.95400	0.8284	1.01355
0.2962	0.90906	0.6010	0.96313	0.9033	1.03255
0.4537	0.93532	0.6945	0.98264	0.9497	1.04494
1,3-Dioxol	lane (1) + 1-chloro	-2-methylprop	ane (2)		
0.0348	0.87525	0.3956	0.92715	0.7950	1.00627
0.0931	0.88270	0.4975	0.94481	0.9022	1.03264
0.1943	0.89639	0.5996	0.96414	0.9485	1.04474
0.2983	0.91166	0.6941	0.98361		
1,3-Dioxol	lane $(1) + 2$ -chloro	-2-methylprop	ane (2)		
0.0226	0.84061	0.4217	0.91179	0.8055	1.00210
0.1024	0.85355	0.5027	0.92887	0.9087	1.03118
0.1975	0.86957	0.6086	0.95272	0.9488	1.04319
0.3114	0.89016	0.7026	0.97531		

TABLE II Densities (ρ) at 298.15 K of the binary mixtures studied

FIGURE 1 Densities for 1,3-dioxolane (1) with an isomeric chlorobutane (2) at T = 298.15 K as a function of mole fraction x_1 . 1-Chlorobutane (\Box); 2-chlorobutane (\blacksquare); 2-methyl-1-chloropropane (O); 2-methyl-2-chloropropane (\bullet).

System	A_1	A_2	A_3	A_4
1,3-Dioxolane +				
1-chlorobutane	-0.07905	-0.01486	-0.00233	-0.00342
2-Chlorobutane	-0.07768	-0.01495	-0.00150	0.00060
1-Chloro-2-methylpropane	-0.07875	-0.01312	-0.00084	-0.00112
2-Chloro-2-methylpropane	-0.07887	-0.01202	-0.00023	-0.00441

TABLE III Density correlation coefficients A_{i}

where ρ_i^0 are the densities of pure compounds. Coefficients A_i are adjustable parameters and they have been gathered in Table III.

Vapour–liquid equilibrium experimental values, T, x_1 , y_1 together with the calculated activity coefficients, γ_i , of studied systems are listed in Table IV and their corresponding graphics are represented in Figs. 2–5. Activity coefficients γ_i have been calculated by means of the equations below:

$$\gamma_{i} = \frac{\gamma_{i}p}{x_{i}p_{i}^{0}} \exp\left[\frac{(B_{ii} - V_{i}^{0})(P - P_{i}^{0}) + (1 - \gamma_{i})^{2}P\delta_{ij}}{RT}\right]$$
(2)

$$\delta_{ij} = 2B_{ij} - B_{ii} - B_{jj} \tag{3}$$

where x_i and y_i are liquid and vapour phase compositions, P is the total pressure, P_i^0 are vapour pressures of the pure compounds calculated from Antoine's equation [10,13,14]. Coefficients of these constants are given in Table V. B_{ii} are second virial coefficients calculated using a mixing rule. V_I^0 is molar volume of saturated pure liquid which were calculated from Yen and Woods method [15]. The exponential term in Eq. (2) was important only at the extreme concentrations.

Thermodynamic consistency of the activity coefficients was tested using van Ness Method by means of a third-order Legendre polynomial for the excess Gibbs energies [16]. This method considers that experimental data are thermodynamically consistent if mean absolute deviation between calculated and measured vapour phase compositions, Δy , is lower than 0.01. All our mixtures are thermodynamically consistent and values of Δy are shown in Table VI.

Activity coefficients were correlated with Margules, Van Laar, Wilson, NRTL and UNIQUAC equations. Calculation of parameters for equations was based on minimising of the following objective function:

$$F = \sum_{k=1}^{N} \sum_{i=1}^{2} \left(\frac{\gamma_i^{\text{exptl}} - \gamma_i^{\text{cal}}}{\gamma_i^{\text{exptl}}} \right)^2 \tag{4}$$

which was formulated by Silvermann and Tassios [17] and where N is the number of experimental data points. Minimisation of F has been done with a non-linear regression procedure [18].

Correlation parameters, A_{ij} and A_{ji} , average deviations in temperature and vapour phase composition, ΔT and Δy , and activity coefficients at infinite dilution, γ_i^{∞} and γ_j^{∞} are gathered in Table VII. We can consider satisfactory that all the correlations and deviations are similar for every mixture with all the equations. Temperature

TABLE IV VLE experimental values of temperature (*T*), mole fraction of liquid phase and vapour phase, x_1 and y_1 and activity coefficients, γ_i , of the mixtures formed by 1,3-dioxolane (1) with isomeric chlorobutane (2) at 40.0 and 101.3 kPa

T (K)	x_1	\mathcal{Y}_1	γ_1	γ_2			
1,3-Dioxolane (1) + 1-chlorobutane (2) at 40.0 kPa							
323.83	0.0419	0.0582	1.346	1.000			
323.32	0.0814	0.1155	1.403	0.998			
322.50	0.1584	0.2073	1.337	1.007			
321.91	0.2411	0.2945	1.277	1.016			
321.21	0.3470	0.3897	1.208	1.049			
320.81	0.4573	0.4801	1.147	1.092			
320.70	0.5101	0.5221	1.123	1.116			
320.62	0.6073	0.5954	1.080	1.183			
320.71	0.6672	0.6425	1.057	1.229			
320.97	0.7200	0.6845	1.032	1.276			
321.35	0.8210	0.7756	1.010	1.400			
321.81	0.9002	0.8599	1.003	1.540			
322.62	0.9609	0.9405	0.995	1.620			
1,3-Dioxolane	(1) + 1-chlorobul	tane (2) at 101.3 kI		1 000			
350.07	0.0391	0.0575	1.308	1.008			
330.10	0.0821	0.1152	1.334	1.008			
349.08	0.1554	0.2046	1.294	1.016			
348.07	0.2450	0.3024	1.254	1.028			
347.21	0.3464	0.3989	1.203	1.051			
346.//	0.456/	0.4886	1.134	1.091			
346.50	0.5084	0.5322	1.119	1.112			
346.45	0.6066	0.60//	1.073	1.16/			
346.42	0.6640	0.6546	1.05/	1.204			
346.58	0.7294	0.7087	1.036	1.255			
346.80	0.8258	0.7951	1.019	1.362			
347.36	0.8955	0.8666	1.006	1.452			
348.06	0.9613	0.9459	1.000	1.557			
1,3-Dioxolane	(1) + 2-chlorobul	tane (2) at 40.0kPa	a 1.505	0.00 <i>5</i>			
314.54	0.0583	0.0620	1.505	0.985			
314.43	0.1251	0.1315	1.495	0.985			
314.38	0.2497	0.2276	1.299	1.024			
314.65	0.3420	0.3023	1.245	1.044			
315.28	0.4893	0.4075	1.142	1.116			
316.07	0.6022	0.4926	1.086	1.192			
316.57	0.6578	0.5375	1.062	1.240			
317.69	0.7556	0.6262	1.028	1.347			
318.44	0.8052	0.6807	1.017	1.405			
319.06	0.8409	0.7208	1.005	1.471			
320.10	0.8924	0.7960	1.003	1.531			
321.41	0.9433	0.8774	0.992	1.667			
1,3-Dioxolane	(1) + 2-chlorobul 0 0577	tane (2) at 101.3 k1 0.0634	Pa 1 430	1.010			
340.58	0.1251	0.1315	1.450	1.010			
340.50	0.1251	0.1313	1.373	1.013			
340.52	0.2400	0.2332	1.200	1.029			
340.32	0.3430	0.3203	1.220	1.038			
341.01	0.4003	0.4275	1.140	1.109			
341.04	0.0075	0.5219	1.075	1.195			
342.35	0.0362	0.5007	1.002	1.220			
244.00	0.7393	0.0307	1.031	1.331			
244.00	0.8030	0.7070	1.024	1.300			
245.50	0.0339	0.7437	1.020	1.405			
245.01	0.8934	0.81//	1.008	1.500			
540.92	0.9433	0.09/3	1.005	1.334			

177

TABLE IV Continued

<i>T</i> (K)	<i>x</i> ₁	<i>Y</i> 1	γ_1	γ_2				
1,3-Dioxolan	1.3-Dioxolane $(1) + 1$ -chloro-2-methylpropane (2) at $40.0 kPa$							
315.31	0.0196	0.0197	1.377	1.000				
315.24	0.0602	0.0707	1.614	0.992				
315.23	0.0831	0.0905	1.497	0.995				
315.20	0.1339	0.1400	1.439	0.997				
315.12	0.1854	0.1922	1.432	0.999				
315.12	0.2400	0.2340	1.346	1.015				
315.16	0.2711	0.2592	1.318	1.022				
315.34	0.2965	0.2795	1.290	1.023				
315 51	0 3664	0.3304	1.225	1 049				
315.72	0.4348	0.3879	1.201	1.067				
316.07	0.5085	0.4329	1.130	1.122				
316.38	0.5604	0.4754	1.111	1.147				
316.69	0.6035	0.5092	1.091	1.176				
317.22	0.6672	0.5595	1.061	1.233				
318.25	0 7717	0.6586	1.035	1.341				
318.88	0.8061	0.6944	1.018	1 381				
320.41	0.8934	0.8031	0.998	1.501				
322.48	0.9743	0.9439	0.990	1.679				
1,3-Dioxolan	e(1) + 1-chloro-2-met	hylpropane (2) at 1	01.3 kPa					
341.63	0.0193	0.0211	1.378	1.012				
341.49	0.0806	0.0922	1.448	1.006				
341.35	0.1304	0.1425	1.390	1.009				
341.04	0.1840	0.1842	1.287	1.033				
341.15	0.2040	0.2126	1.335	1.018				
341.12	0.2369	0.2429	1.315	1.022				
341.03	0.2721	0.2417	1.143	1.076				
341.13	0.2961	0.2928	1.268	1.035				
341.28	0.3700	0.3397	1.171	1.075				
341.74	0.5069	0.4586	1.136	1.110				
342.03	0.5567	0.4971	1.110	1.137				
342.84	0.6588	0.5846	1.073	1.190				
343.32	0.7199	0.6330	1.046	1.262				
343.87	0.7633	0.6656	0.957	1.499				
345.22	0.8493	0.7752	1.018	1.357				
345.88	0.8944	0.8287	1.011	1.447				
346.99	0.9401	0.8949	1.002	1.514				
347.78	0.9679	0.9452	1.001	1.440				
1,3-Dioxoland	e(1) + 2-chloro-2-met	hylpropane (2) at 1	01.3 kPa					
324.87	0.0897	0.0539	1.396	1.005				
325.95	0.1850	0.1100	1.325	1.021				
327.50	0.2971	0.1756	1.241	1.045				
328.71	0.3794	0.2267	1.198	1.070				
331.75	0.5464	0.3331	1.091	1.151				
334.26	0.6629	0.4304	1.061	1.227				
336.41	0.7453	0.5083	1.031	1.317				
338.79	0.8159	0.5924	1.009	1.411				
340.56	0.8673	0.6700	1.010	1.507				
341.94	0.8923	0.7266	1.015	1.480				
344.43	0.9398	0.8193	0.999	1.635				
346.30	0.9653	0.8952	0.998	1.563				

deviations are between 0.05 and 0.24 K while deviations in composition are between 0.0025 and 0.0075.

We have chosen Wilson equation to obtain T, x, y diagrams, which are graphically represented for all the mixtures at 101.13 and 40.0 kPa in Figs. 2–5 together with experimental data.

FIGURE 2 T, x, y diagram for 1,3-dioxolane (1) + 1-chlorobutane (2): (\bigcirc, \bullet) exptl data at 40.0 kPa; (\Box, \bullet) exptl data at 101.3 kPa; (\frown, \bullet) Wilson equation.

FIGURE 3 T, x, y diagram for 1,3-dioxolane (1)+2-chlorobutane (2): (\bigcirc, \bullet) exptl data at 40.0 kPa; (\Box, \bullet) exptl data at 101.3 kPa; (\frown, \bullet) Wilson equation.

FIGURE 4 T, x, y diagram for 1,3-dioxolane (1) + 1-chloro-2-methylpropane (2): (\bigcirc, \bullet) exptl data at 40.0 kPa; (\Box, \blacksquare) exptl data at 101.3 kPa; (----) Wilson equation.

Compound	A	В	С
1,3-Dioxolane ^a	6.23182	1236.700	217.235
1-Chlorobutane ^b	6.05154	1216.820	222.330
2-Chlorobutane ^b	6.12220	1245.200	234.400
1-Chloro-2-methylpropane ^c	6.01854	1176.060	224.125
2-Chloro-2-methylpropane ^c	5.99201	114.899	229.000

TABLE V Coefficients of Antoine's equation for pure compounds (pressure in kPa and temperature in $^\circ\text{C})$

^aRef. [13]; ^bRef. [10]; ^cRef. [14].

TABLE VI Values of average deviations ΔP and Δy obtained from the test of the thermodynamic consistence

System	P (kPa)	ΔP (kPa)	Δy
1,3-Dioxolane +			
1-Chlorobutane	40.0	0.09	0.0046
	101.3	0.36	0.0036
2-Chlorobutane	40.0	0.30	0.0027
	101.3	0.48	0.0028
1-Chloro-2-methylpropane	40.0	0.21	0.0027
* * *	101.3	0.86	0.0052
2-Chloro-2-methylpropane	101.3	0.43	0.0041

TABLE VII Correlation parameters, A_{ij} and A_{ji} , average deviations, ΔT and Δy , and activity coefficients at infinite dilution, γ_i^{∞} and γ_j^{∞}

Equation	A_{ij}	A_{ji}	$\Delta T (\mathbf{K})$	Δy	γ_i^∞	γ_j^∞
1,3-Dioxolane	(1) + 1-chlorobutar	ne (2) at 40.0 kPa				
Margules	0.3549	0.5418	0.05	0.0048	1.43	1.72
Van Laar	0.3720	0.5498	0.06	0.0046	1.45	1.73
Wilson	777.8019	718.1191	0.06	0.0046	1.40	1.66
NRTL	2392.7756	-842.8840	0.06	0.0046	1.45	1.66
UNIQUAC	145.6445	414.8008	0.06	0.0046	1.45	1.73
1,3-Dioxolane	(1) + 1-chlorobutar	ne (2) at 101.3 kPa	a			
Margules	0.3378	0.4871	0.11	0.0037	1.40	1.63
Van Laar	0.3487	0.4949	0.12	0.0037	1.40	1.64
Wilson	888.5569	554.1769	0.12	0.0036	1.42	1.64
NRTL	2301.8022	-808.1279	0.11	0.0037	1.41	1.63
UNIQUAC	23.7737	546.6873	0.11	0.0036	1.41	1.64
1,3-Dioxolane	(1) + 2-chlorobutar	ne (2) at 40.0 kPa				
Margules	0.4624	0.5651	0.18	0.0025	1.59	1.76
Van Laar	0.4662	0.5699	0.18	0.0026	1.59	1.77
Wilson	1251.7616	283.1565	0.19	0.0029	1.60	1.77
NRTL	1723.1248	-199.4811	0.19	0.0029	1.59	1.76
UNIQUAC	-173.7662	839.9905	0.19	0.0029	1.59	1.76
1,3-Dioxolane	(1) + 2-chlorobutar	ne (2) at 101.3 kPa	a			
Margules	0.4067	0.5098	0.14	0.0032	1.50	1.66
Van Laar	0.4134	0.5122	0.14	0.0032	1.51	1.67
Wilson	1245.2933	238.0096	0.14	0.0035	1.51	1.67
NRTL	1835.1145	-347.0372	0.14	0.0034	1.51	1.66
UNIQUAC	-194.0903	844.5504	0.14	0.0034	1.51	1.67

(continued)

1,3-Dioxolane (1	1) + 1-chloro-2-methy	lpropane (2) at 40.0)kPa			
Margules	0.4245	0.5676	0.11	0.0027	1.53	1.76
Van Laar	0.4342	0.5701	0.11	0.0028	1.54	1.77
Wilson	1051.6367	480.4404	0.11	0.0029	1.49	1.69
NRTL	2015.5572	-469.5749	0.11	0.0028	1.50	1.69
UNIQUAC	22.9590	602.2255	0.11	0.0028	1.48	1.69
1,3-Dioxolane (1	1) + 1-chloro-2-methy	lpropane (2) at 101	.3 kPa			
Margules	0.3891	0.4467	0.27	0.0053	1.48	1.56
Van Laar	0.3922	0.4464	0.27	0.0053	1.48	1.56
Wilson	1396.5892	-98.8980	0.27	0.0053	1.48	1.56
NRTL	1352.8069	-64.3081	0.27	0.0053	1.48	1.56
UNIQUAC	-348.3529	983.6728	0.27	0.0053	1.48	1.56
1,3-Dioxolane (1	1) + 2-chloro-2-methy	lpropane (2) at 101	.3 kPa			
Margules	0.4089	0.5269	0.15	0.0051	1.51	1.69
Van Laar	0.4190	0.5289	0.15	0.0051	1.52	1.70
Wilson	1162.6974	373.3730	0.16	0.0060	1.53	1.70
NRTL	2134.5351	-574.7263	0.16	0.0058	1.51	1.69
UNIQUAC	-121.2535	732.7617	0.16	0.0059	1.52	1.69

TABLE VII Continued

TABLE VIII Composition, $x_{1(az)}$ and boiling temperature, $T_{(az)}$ of azeotropic mixtures

System	P (kPa)	$x_{1(az)}$	$T_{(az)}$ (K)
1,3-Dioxolane +			
1-Chlorobutane	40.0	0.592	320.7
	101.3	0.643	346.5
2-Chlorobutane	40.0	0.136	314.0
	101.3	0.234	340.6
1-Chloro-2-methylpropane	40.0	0.171	315.0
	101.3	0.244	341.4

The systems present positive deviations from ideality and all of them, excepting 1,3-dioxolane + 2-chloro-2-methylpropane, present azeotropes, whose values of composition and temperature are listed in Table VIII.

Acknowledgement

Authors are grateful for financial assistance from Ibercaja (IBE2002-CIEN-02)

References

- [1] I. Gascón, M. Domínguez, P. Cea, M.C. López and F.J. Royo (2001). Chem. Thermodyn., 33, 1361.
- [2] H. Artigas, C. Lafuente, M.C. López, F. Royo and J.S. Urieta (1994). J. Chem. Eng. Data, 39, 729.
- [3] P. Cea, C. Lafuente, M.L. Sanz, F. Royo and J.S. Urieta (1995). J. Chem. Eng. Data, 40, 692.
- [4] H.C. Van Ness, S.M. Byer and R.E. Gibbs (1973). AIChE. J., 19, 238.
- [5] M. Margules (1985). Sitzunsber. Akad. Wiss. Wien, Math. -Naturwis. KI. II., 104, 1234.
- [6] J.J. Van Laar (1910). Z. Phys. Chem., 72, 723.
- [7] G.M. Wilson (1964). J. Am. Chem. Soc., 86, 127.
- [8] H. Renon and J.M. Praunsnitz (1968). AIChE. J., 14, 135.
- [9] D.S. Abrams and J.M. Praunsnitz (1975). AIChE. J., 21, 116.
- [10] J.A. Riddick, W.B. Bunger and T.K. Sakano (1986). Organic Solvents. Physical Properties and Methods of Purification, 4th Edn. Wiley Interscience, New York.

- [11] P. Brocos, E. Calvo, A. Amigo, R. Bravo, M. Pinto, A.H. Roux and G.J. Roux-Desgranges (1998). *Chem. Eng. Data.*, 43, 112.
- [12] H. Artigas, C. Lafuente, M.C. López, F.M. Royo and J.S. Urieta (1997). Fluid Phase Equilibria., 134, 163.
- [13] H.S. Wu and S.Y. Sandler (1989). J. Chem. Eng. Data., 34, 209.
- [14] J. Gmehling and U. Onken (1981). Dechema Chemestry Data Series. Frankfurt/Main.
- [15] L.C. Yen and S.S. Woods (1968). AIChE. J., 14, 95.
- [16] A. Fredeslund, J. Gmehling and P. Radmussen (1977). Vapour-liquid Equilibria Using UNIFAC, pp. 68-74. Elsevier, Amsterdam.
- [17] N. Silverman and D.P. Tassios (1984). Ind. Eng. Chem. Process. Des. Dev., 23, 586.
- [18] J.A. Nelder and R.A. Mead (1965). Comput. J., 7, 308.